Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract If Type Ia supernovae (SNe Ia) result from a white dwarf being ignited by Roche-lobe overflow from a nondegenerate companion, then as the SN explosion runs into the companion star its ejecta will be shocked, causing an early blue excess in the lightcurve. A handful of these excesses have been found in single-object studies, but inferences about the population of SNe Ia as a whole have been limited because of the rarity of multiwavelength follow-up within days of explosion. Here we present a 3 yr investigation yielding a nearly unbiased sample of nine nearby (z < 0.01) SNe Ia with exemplary early data. The data are multiwavelength, coveringUBVgriand Neil Gehrels Swift Observatory UV bandpasses, and also early, with an average first epoch 16.0 days before maximum light. Of the nine objects, three show early blue excesses. We do not find enough statistical evidence to reject the null hypothesis that SNe Ia predominantly arise from Roche-lobe-overflowing single-degenerate systems (p= 0.94). When looking at the objects’ colors, we find the objects are almost uniformly near-UV–blue, in contrast to earlier literature samples which found that only a third of SNe Ia are near-UV–blue, and we find a seemingly continuous range ofB − Vcolors in the days after explosion, again in contrast with earlier claims in the literature. This study highlights the importance of early, multiwavelength, high-cadence data in determining the progenitor systems of SNe Ia and in revealing their diverse early behavior.more » « lessFree, publicly-accessible full text available November 17, 2026
-
Due to high-cadence automated surveys, we can now detect and classify supernovae (SNe) within a few days after explosion, if not earlier. Early-time spectra of young SNe directly probe the outermost layers of the ejecta, providing insights into the extent of stripping in the progenitor star and the explosion mechanism in the case of core-collapse supernovae. However, many SNe show overlapping observational characteristics at early times, complicating the early-time classification. In this paper, we focus on the study and classification of type Ib supernovae (SNe Ib), which are a subclass of core-collapse SNe that lack strong hydrogen lines but show helium lines in their spectra. Here we present a spectral dataset of eight SNe Ib, chosen to have at least three pre-maximum spectra, which we call early spectra. Our dataset was obtained mainly by the Las Cumbres Observatory (LCO) and it consists of a total of 82 optical photospheric spectra, including 38 early spectra. This dataset increases the number of published SNe Ib with at least three early spectra by ∼60%. For our classification efforts, we used early spectra in addition to spectra taken around maximum light. We also converted our spectra into SN IDentification (SNID) templates and make them available to the community for easier identification of young SNe Ib. Our dataset increases the number of publicly available SNID templates of early spectra of SNe Ib by ∼43%. Half of our sample has SN types that change over time or are different from what is listed on the Transient Name Server (TNS). We discuss the implications of our dataset and our findings for current and upcoming SN surveys and their classification efforts.more » « less
-
We present a comprehensive photometric and spectroscopic study of the Type IIP supernova (SN) 2018is. TheVband luminosity and the expansion velocity at 50 days post-explosion are −15.1 ± 0.2 mag (corrected for AV= 1.34 mag) and 1400 km s−1, classifying it as a low-luminosity SN II. The recombination phase in theVband is shorter, lasting around 110 days, and exhibits a steeper decline (1.0 mag per 100 days) compared to most other low-luminosity SNe II. Additionally, the optical and near-infrared spectra display hydrogen emission lines that are strikingly narrow, even for this class. The Fe IIand Sc IIline velocities are at the lower end of the typical range for low-luminosity SNe II. Semi-analytical modelling of the bolometric light curve suggests an ejecta mass of ∼8 M⊙, corresponding to a pre-supernova mass of ∼9.5 M⊙, and an explosion energy of ∼0.40 × 1051erg. Hydrodynamical modelling further indicates that the progenitor had a zero-age main sequence mass of 9 M⊙, coupled with a low explosion energy of 0.19 × 1051erg. The nebular spectrum reveals weak [O I]λλ6300,6364 lines, consistent with a moderate-mass progenitor, while features typical of Fe core-collapse events, such as He I, [C I], and Fe I, are indiscernible. However, the redder colours and low ratio of Ni to Fe abundance do not support an electron-capture scenario either. As a low-luminosity SN II with an atypically steep decline during the photospheric phase and remarkably narrow emission lines, SN 2018is contributes to the diversity observed within this population.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract We present analysis of the plateau and late-time phase properties of a sample of 39 Type II supernovae (SNe II) that show narrow, transient, high-ionization emission lines (i.e., “IIn-like”) in their early-time spectra from interaction with confined, dense circumstellar material (CSM). Originally presented by W. V. Jacobson-Galán et al., this sample also includes multicolor light curves and spectra extending to late-time phases of 35 SNe with no evidence for IIn-like features at <2 days after first light. We measure photospheric phase light-curve properties for the distance-corrected sample and find that SNe II with IIn-like features have significantly higher luminosities and decline rates at +50 days than the comparison sample, which could be connected to inflated progenitor radii, lower ejecta mass, and/or persistent CSM interaction. However, we find no statistical evidence that the measured plateau durations and56Ni masses of SNe II with and without IIn-like features arise from different distributions. We estimate progenitor zero-age main-sequence (ZAMS) masses for all SNe with nebular spectroscopy through spectral model comparisons and find that most objects, both with and without IIn-like features, are consistent with progenitor masses ≤12.5M⊙. Combining progenitor ZAMS masses with CSM densities inferred from early-time spectra suggests multiple channels for enhanced mass loss in the final years before core collapse, such as a convection-driven chromosphere or binary interaction. Finally, we find spectroscopic evidence for ongoing ejecta-CSM interaction at radii >1016cm, consistent with substantial progenitor mass-loss rates of ∼10−4–10−5M⊙yr−1(vw < 50 km s−1) in the final centuries to millennia before explosion.more » « lessFree, publicly-accessible full text available October 8, 2026
-
Abstract The advent of sensitive gravitational-wave (GW) detectors, coupled with wide-field, high-cadence optical time-domain surveys, raises the possibility of the first joint GW–electromagnetic detections of core-collapse supernovae (CCSNe). For targeted searches of GWs from CCSNe, optical observations can be used to increase the sensitivity of the search by restricting the relevant time interval, defined here as the GW search window (GSW). The extent of the GSW is a critical factor in determining the achievable false alarm probability for a triggered CCSN search. The ability to constrain the GSW from optical observations depends on how early a CCSN is detected, as well as the ability to model the early optical emission. Here we present several approaches to constrain the GSW, ranging in complexity from model-independent analytical fits of the early light curve, model-dependent fits of the rising or entire light curve, and a new data-driven approach using existing well-sampled CCSN light curves from Kepler and the Transiting Exoplanet Survey Satellite. We use these approaches to determine the time of core-collapse and its associated uncertainty (i.e., the GSW). We apply our methods to two Type II SNe that occurred during LIGO/Virgo Observing Run 3: SN 2019fcn and SN 2019ejj (both in the same galaxy at d = 15.7 Mpc). Our approach shortens the duration of the GSW and improves the robustness of the GSW compared to the techniques used in past GW CCSN searches.more » « less
-
ABSTRACT Near-infrared (NIR) observations of normal Type Ia supernovae (SNe Ia) obtained between 150 and 500 d past maximum light reveal the existence of an extended plateau. Here, we present observations of the underluminous, 1991bg-like SN 2021qvv. Early, ground-based optical and NIR observations show that SN 2021qvv is similar to SN 2006mr, making it one of the dimmest, fastest evolving 1991bg-like SNe to date. Late-time (170–250 d) Hubble Space Telescope observations of SN 2021qvv reveal no sign of a plateau. An extrapolation of these observations backwards to earlier-phase NIR observations of SN 2006mr suggests the complete absence of an NIR plateau, at least out to 250 d. This absence may be due to a higher ionization state of the ejecta, as predicted by certain sub-Chandrasekhar-mass detonation models, or to the lower temperatures of the ejecta of 1991bg-like SNe, relative to normal SNe Ia, which might preclude their becoming fluorescent and shifting ultraviolet light into the NIR. This suggestion can be tested by acquiring NIR imaging of a sample of 1991bg-like SNe that covers the entire range from slowly evolving to fast-evolving events (0.2 ≲ sBV ≲ 0.6). A detection of the NIR plateau in slower evolving, hotter 1991bg-like SNe would provide further evidence that these SNe exist along a continuum with normal SNe Ia. Theoretical progenitor and explosion scenarios would then have to match the observed properties of both SN Ia subtypes.more » « less
-
Abstract We present ultraviolet/optical/near-infrared observations and modeling of Type II supernovae (SNe II) whose early time (δt< 2 days) spectra show transient, narrow emission lines from shock ionization of confined (r< 1015cm) circumstellar material (CSM). The observed electron-scattering broadened line profiles (i.e., IIn-like) of Hi, Hei/ii, Civ, and Niii/iv/vfrom the CSM persist on a characteristic timescale (tIIn) that marks a transition to a lower-density CSM and the emergence of Doppler-broadened features from the fast-moving SN ejecta. Our sample, the largest to date, consists of 39 SNe with early time IIn-like features in addition to 35 “comparison” SNe with no evidence of early time IIn-like features, all with ultraviolet observations. The total sample includes 50 unpublished objects with a total of 474 previously unpublished spectra and 50 multiband light curves, collected primarily through the Young Supernova Experiment and Global Supernova Project collaborations. For all sample objects, we find a significant correlation between peak ultraviolet brightness and bothtIInand the rise time, as well as evidence for enhanced peak luminosities in SNe II with IIn-like features. We quantify mass-loss rates and CSM density for the sample through the matching of peak multiband absolute magnitudes, rise times,tIIn, and optical SN spectra with a grid of radiation hydrodynamics and non-local thermodynamic equilibrium radiative-transfer simulations. For our grid of models, all with the same underlying explosion, there is a trend between the duration of the electron-scattering broadened line profiles and inferred mass-loss rate: (0.01M⊙yr−1)] days.more » « less
-
Abstract We present a comprehensive analysis of 653 optical candidate counterparts reported during the third gravitational-wave (GW) observing run. Our sample concentrates on candidates from the 15 events (published in GWTC-2, GWTC-3, or not retracted on GraceDB) that had a >1% chance of including a neutron star in order to assess their viability as true kilonovae. In particular, we leverage tools available in real time, including pre-merger detections and cross-matching with catalogs (i.e., point-source, variable-star, quasar and host-galaxy redshift data sets), to eliminate 65% of candidates in our sample. We further employ spectroscopic classifications, late-time detections, and light-curve behavior analyses and conclude that 66 candidates remain viable kilonovae. These candidates lack sufficient information to determine their classifications, and the majority would require luminosities greater than that of AT 2017gfo. Pre-merger detections in public photometric survey data and comparison of cataloged host-galaxy redshifts with the GW event distances are critical to incorporate into vetting procedures, as these tools eliminated >20% and >30% of candidates, respectively. We expect that such tools that leverage archival information will significantly reduce the strain on spectroscopic and photometric follow-up resources in future observing runs. Finally, we discuss the critical role prompt updates from GW astronomers to the EM community play in reducing the number of candidates requiring vetting.more » « less
-
Abstract We present photometric and spectroscopic data for SN 2022joj, a nearby peculiar Type Ia supernova (SN Ia) with a fast decline rate (Δm15,B= 1.4 mag). SN 2022joj shows exceedingly red colors, with a value of approximatelyB−V≈ 1.1 mag during its initial stages, beginning from 11 days before maximum brightness. As it evolves, the flux shifts toward the blue end of the spectrum, approachingB−V≈ 0 mag around maximum light. Furthermore, at maximum light and beyond, the photometry is consistent with that of typical SNe Ia. This unusual behavior extends to its spectral characteristics, which initially displayed a red spectrum and later evolved to exhibit greater consistency with typical SNe Ia. Spectroscopically, we find strong agreement between SN 2022joj and double detonation models with white dwarf masses of around 1M⊙and a thin He shell between 0.01 and 0.05M⊙. Moreover, the early red colors are explained by line-blanketing absorption from iron peak elements created by the double detonation scenario in similar mass ranges. The nebular spectra in SN 2022joj deviate from expectations for double detonation, as we observe strong [Feiii] emission instead of [Caii] lines as anticipated, though this is not as robust a prediction as early red colors and spectra. The fact that as He shells get thinner these SNe start to look more like normal SNe Ia raises the possibility that this is the triggering mechanism for the majority of SNe Ia, though evidence would be missed if the SNe are not observed early enough.more » « less
An official website of the United States government
